
Abstract: For the curve on the regular surface, there is moving frame with this thatis named Darboux
frame. Sweeping surfaces through the curve associated with Darboux frame are introduced and their
geometrical properties are investigated. Moreover, we obtain the necessary and sufficient conditions of
this kind of surfaces to be developable ruled surfaces. Finally, an example to illustrate the application
of the results is introduced.
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1 Introduction

Sweeping surfaces are generated by the motion
of the plane curve ( profile curve or generatrix)
while the movement of the plane in the space has
the same direction of the normal for the plane.
In geometrical modeling, sweeping is an essential
and useful tool and it has some applications in
networks of blood vessels, neurons in medicine
and hose systems in industrial environments. The
idea depends on choosing a geometrical object,
that is called generator, and sweeping it along a
spine curve, which is called trajectory [1-13].

Several studies in the previous literature that
may be inclusived in the area of our treatise are
as follows: Yıldız et al. [2] conducted the geomet-
rical observation of the ascending colons for sev-
eral domestic animals as pigs, horses, ruminants,
and dogs; these ascending colons were shown to
have the tubular shape along the special curve,
which is the application for tubular surfaces in
medicine. Blaga [3] applied tubular surfaces as
swept surfaces and put forward new approaches
for the realization for tubular and canal surfaces
in addition to showing applications of tubular
surfaces in scientific visualization. Karacan and
Yaylı [5] studied geodesics of tubular surfaces at
Minkowski 3-space. Karacan et al. [7] investi-
gated the general and linear Weingarten condi-
tions of tubular surfaces by the use of the Gaus-

sian and mean curvature of the surface in Eu-
clidean 3-space. Doğan [8] intended generalized
canal surfaces and some special curves on them in
his dissertation. Recently, tubular and canal sur-
faces have been also represented as quaternionic
by several authors [9, 10].

In view of the mentioned references, tubular
surface, string, pipe surface, and canal surface
are considered as different names for the sweeping
surfaces. So far as we know, there is no previous
studies in regard to curves that lying at surfaces
as the initial objects with the consideration of [13,
14], this study focuses on the geometrical prop-
erties of sweeping surfaces whose center curves in
surfaces at Euclidean 3-space E3. Furthermore,
in kinematics, the sweeping surfaces, the ruled
surfaces, are introduced as one-dimensional line
manifolds created by oriented moving line in the
space, playing an important role of the line trajec-
tory. As a consequence, considering the sweeping
surfaces as a special ruled surfaces is important
in both kinematics and differential line geometry
theory.

In this work, the differential geometry of the
sweeping surface with Darboux frame is devel-
oped. We also show that the parametric curves
on this surface are lines of curvature. Then we
study local singularities and convexity of a sweep-
ing surface. In terms of this, we derived the nec-
essary and sufficient condition of the sweeping
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surface to become the developable ruled surface.
Additionally, an example of application is intro-
duced and explained in detail.

2 Preliminaries
Suppose α : I ⊆ R→ E3 is the unit speed curve,
κ(s) and τ(s) define natural curvature and tor-
sion of α = α(s), in the same order. Suppose

α
′′

(s) 6= 0 for any s ∈ [0, L], which gives the
straight line. At this work, α

′
(s) defines deriva-

tive of α respecting to the arc length parame-
ter s. For all points of α(s), this set of {t(s),
n(s), e1(s)} is named the Serret–Frenet frame
through α(s), where t(s) = α

′
(s) is a unit tan-

gent, n(s) = α
′′

(s)/
∥∥∥α′′

(s)
∥∥∥ is a unit principal

normal, and b(s) = t(s)×n(s) is a unit binormal
vector. The arc-length derivative of the Serret–
Frenet frame is given as: t

′

n
′

b
′

 =

 0 κ(s) 0
−κ(s) 0 τ(s)
0 −τ(s) 0

 t
n
b

 .
(1)

Consider F is the regular surface, and α : I ⊆
R → F is the unit speed curve at F . On this
surface, the Darboux frame is {α(s); e1, e2, e3};
e1(s) is a unit tangent vector to α(s), e3 = e3(s)
is a surface unit normal restricted to α, and
e2(s)= e3×e1 is a unit tangent to this surface F .
Then, the rotation matrix between Serret–Frenet
frame and Darboux frame is t

n
b

 =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 e1
e2
e3

 . (2)

The variation of the Darboux frame through the
curve α(s) is described using next equations: e

′

1

e
′

2

e
′

3

 =

 0 κg κn
−κg 0 τg
−κn −τg 0

 e1
e2
e3

 , (3)

where

κn(s) = κ sin θ =< α
′′

, e3 >,

κg(s) = κ cos θ = det
(
α

′
, α

′′

, e3

)
,

τg(s) = τ − θ′
= det

(
α

′
, e3, e

′

3

)
.

 (4)

We call κg = κg(s) a geodesic curvature, κn =

κn(s) the normal curvature, and τg = τ + θ
′

the
geodesic torsion of α(s), in the same order. The
geodesics, line of curvatures, and asymptotic lines
on a smooth surface as quantities can be charac-
terized, as loci along which κg = 0, τg = 0, and
κn = 0, in the same order [1-3].

3 Sweeping surfaces with
Darboux frame

In this section, we shall give the parametric rep-
resentation of sweeping surfaces through a spine
curve α(s) of the surface F in the following: The
sweeping surface associated to α(s), is the enve-
lope of the one-parameter family of unit spheres,
with the center on the curve α(s). Clearly, the
contact between the spheres from the family and
the sweeping surface is the great circle of the unit
sphere, lying on the subspace Sp{e2, e3}, of the
spine curve α(s). Let us describe, then, a very
simple method of representation of the sweeping
surface. Take the parameter along α(s) to be one
of the parameters and define by Q the position
vector joining the point from the curve α(s) with
the other from the sweeping surface. Therefore,
it is clear that

M : Q = α(s) + x, (5)

where the unit vector x itself lies in the subspace
Sp{e2, e3}. Let us denote by the angle ϑ between
the vectors x and e2 . Therefore,

x(ϑ)= cosϑe2 + sinϑe3, (6)

which is the characteristic circle of sweeping sur-
face. Combining Eqs. (5) and (6), we see that
we obtained a parameterization of the sweeping
surface,

M : Q(s, ϑ) = α(s)+cosϑe2(s)+sinϑe3(s). (7)

Parametrizing M in this way excludes sweeping
surfaces with stationary vector e1, whose geo-
metrical properties have less interest and easier
to be explored.

Remark 3.1. Clearly, if α(s) defines the
straight line, then the sweeping surface associated
to it is just the circular cylinder, having α(s) as
symmetry axis. If, on the other hand, α(s) is a
circle, then the corresponding sweeping surface is
a torus.

3.1 Geometrical properties
Using Eq. (3), leads to

Qϑ(s, ϑ) = − sinϑe2 + cosϑe3,
Qs(s, ϑ) = (1− κg cosϑ− κn sinϑ)e1

+τgQϑ(s, ϑ),

 (8)

and

N(s, ϑ) :=
Qϑ ×Qs

‖Qϑ ×Qs‖
= ± (cosϑe2 + sinϑe3) .

(9)
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The sign is depending on the sign of (1−κg cosϑ−
κn sinϑ) Eq. (9) shows that the surface normal
N(s, ϑ) is contained in the the subspace Sp{e2,
e3}, because it is perpendicular to e1. From Eqs.
(8), it is easily checked that the coefficients of the
first fundamental form g11 = < Qs,Qs >, g12 =<
Qs,Qϑ > and g22 =< Qϑ,Qϑ > are given by

g11=(1− κg cosϑ− κn sinϑ)2 + τ2g

, g12 = τg, g22 = 1. (10)

To compute the second fundamental form of M ,
we have to calculate the following

Qss = [−
(
κ

′

g cosϑ+ κ
′

n sinϑ
)

+τg(κg sinϑ− κn cosϑ) ] e1

+ [κg (1− κn sinϑ)−
(
κ2g + τ2g

)
cosϑ

−τ ′

g sinϑ ] e2

+ [κn (1− κg cosϑ)−
(
κ2g + τ2g

)
sinϑ

+τ
′

g cosϑ ] e3,

Qsϑ = (κg sinϑ− κn cosϑ)e1
−τ (cosϑe2 + sinϑe3) ,

Qϑϑ = − cosϑe2 − sinϑe3.


It gives the elements for second fundamen-
tal form h11 =< Qss,N >, h12 =< Qsϑ,N >,
and h22 =< Qϑϑ,N > are given by

h11 = (1− κg cosϑ− κn sinϑ)(κg cosϑ
+κn sinϑ) + τ2g ,

h12 = τg, h22 = −1.

 (11)

The Gaussian and mean curvature of the sweep-
ing surface around the regular point are obtained,
respectively, as

K(s, ϑ) :=
h11h22 − h212
g11g22 − g212

=
κg cosϑ+ κn sinϑ

1− κg cosϑ− κn sinϑ
,

(12)
and

H(s, ϑ) :=
g22h11 − 2g12h12 + g11h22

2
(
g11g22 − g212

)
=

2 (κg cosϑ+ κn sinϑ)− 1

2 (1− κg cosϑ− κn sinϑ− 1)
. (13)

Proposition 3.1. For the sweeping surface
M represented by Eq. (7), the values of K(s, ϑ),
and H(s, ϑ) are independent of the geodesic

torsion for the spine curve α(s).

Proposition 3.2. Suppose α : I ⊆ R → F
is the unit speed curve on a surface F , then we
state the following:
(1) If α is a geodesic on F , then the Gaussian and
mean curvature of the sweeping surface M are:

K(s, ϑ) =
κn sinϑ

1− κn sinϑ
,

and

H(s, ϑ) =
2κn sinϑ− 1

2 (1− κn sinϑ− 1)
.

(2) If α is an asymptotic on F , then the Gaussian
and mean curvature of the sweeping surface M
are

K(s, ϑ) =
κg cosϑ

1− κg cosϑ
,

and

H(s, ϑ) =
2κg cosϑ− 1

2 (1− κg cosϑ− 1)
.

On the other hand, from Eq. (7) it is easily
checked that the isoparametric curve

ζ(ϑ) := Q(ϑ, s0) = α(s0)+cosϑe2(s0)+sinϑe3(s0),
(14)

is the planar unit speed curve. The unit tangent
vector to ζ(ϑ) is

Tζ(ϑ) = − sinϑe2(s0) + cosϑe3(s0),

therefore the unit principal normal vector of ζ(ϑ)
is written as

Nζ = e1(s0)×Tζ(u) = cosϑe2+sinϑe3 = N(s0, ϑ).

Hence, the surface normal N(s0, ϑ) is parallel to
the principal normal Nζ , which means the curve
ζ(ϑ) is the geodesic, and cannot be asymptotic
curve on M .

Proposition 3.3. Suppose α : I ⊆ R → F
is the unit speed curve at a surface F . Then the
s-parameter curves are asymptotic curves on M
if and only if

ϑ = tan−1

κn ± κg
√
κ2n + κ2g − σ2

κg ± κn
√
κ2n + κ2g − σ2

 , (15)

where

σ(s) =
1

2

[
1±

√
1− 4τ4g

]
.

Proof. The s- parameter curves are asymptotic
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curves on M if and only if

〈N,Qss〉 = 0⇔
(κg cosϑ+ κn sinϑ)2 − (κg cosϑ+ κn sinϑ)− τ2g
= 0.

It follows that

sinϑ =
κn ± κg

√
κ2n + κ2g − σ2

κ2n + κ2g
, and

cosϑ =
κg ± κn

√
κ2n + κ2g − σ2

κ2n + κ2g
, (16)

we therefore obtain Eq. (15) .

3.1.1 Singularity and lines of curvature
Singularities and lines of curvature are important
to understand properties of sweeping surfaces and
they will be studied as coming: The sweeping
surface M has singular points if and only if the
first derivatives are linearly dependent, that is,

Qϑ ×Qs= (1− κg cosϑ− κn sinϑ)N = 0. (17)

Since N is not zero unit vector, therefore

1− κg cosϑ− κn sinϑ = 0,

that is,

sinϑ =
κn ± κg

√
κ2n + κ2g − 1

κ2n + κ2g
, and

cosϑ =
κg ± κn

√
κ2n + κ2g − 1

κ2n + κ2g
. (18)

Thus, two singular points occur on every gener-
ating circle. By the connect of these two sets of
singular points we have two curves that include
all singular points of the sweeping surface. Using
Eq. (7) gives the expression of these two curves
as

γ(s) = α(s) +
κg ± κn

√
κ2n + κ2g − 1

κ2n + κ2g
e2

+
κn ± κg

√
κ2n + κ2g − 1

κ2n + κ2g
e3. (19)

The previous analysis leads to the next corol-
lary:

Corollary 3.1. The sweeping surface M
represented by Eq. (7), has no singular points if

the condition

1-κg
κg±κn

√
κ2
n+κ

2
g−1

κ2
n+κ

2
g

− κn
κn±κg

√
κ2
n+κ

2
g−1

κ2
n+κ

2
g

6= 0,

is satisfied
According to theory of line of curvature, if ev-

ery generating circle is lines of curvature, conse-
quently Nϑ = λ(ϑ)Qϑ, where λ(ϑ) is a differen-
tiable function of ϑ. Using algebraic manipula-
tions, it is founded that the generating circles are
lines of curvature if and only if

τg(1− κg cosϑ− κn sinϑ) = 0.

for any s, and ϑ. Clearly, there is two cases, and
they are as coming:
Case (1) occurs if τg 6= 0, and 1 − κg cosϑ −
κn sinϑ = 0. Therefore there are two singular
points at the generating circle, they are located
at

ϑ = tan−1

κn ± κg
√
κ2n + κ2g − 1

κg ± κn
√
κ2n + κ2g − 1

 . (20)

Case (2) occurs when τg = 0 (θ
′

= τ), and 1 −
κg cosϑ−κn sinϑ 6= 0. Thus, from Eqs. (10), and
(11) it can be found that g12 = h12 = 0. Thus,
the ϑ-and s curves of M are lines of curvature.
Namely, the Darboux frame turn out to the so
called Bishop frame or rotation minimizing frame
(RMF) [4, 6].

Surfaces whose parametric curves are lines
of curvature have several applications in ge-
ometric design. In the case of sweeping sur-
faces, one has to compute the offset surfaces
Qf (s, ϑ) = Q(s, ϑ) + f N(s, ϑ) of a given surface
Q(s, ϑ) at a certain distance f . In consequence
of this equation, the offsetting operation for
sweeping surface can be reduced to the offsetting
of planar profile curve, which is much easier to
deal with. Hence, we can state the following
proposition:

Proposition 3.4. Consider a sweeping
surface M represented by Eq. (7). Let xf (ϑ) be
the planar offset of the profile x(ϑ) at distance
f . Then the offset surface Qf (s, ϑ) is again a
sweeping surface, generated by the spine curve
α(s) and profile curve xf (ϑ).

Through the reminder of this work we will
study sweeping surfaces characterized by τg = 0,
and 1 − κg cosϑ − κn sinϑ 6= 0. Therefore, the
value of one principal curvature is

χ1 :=

∥∥∥∥∥dxdϑ × d2x

dϑ2

∥∥∥∥∥
∥∥∥∥dxdϑ

∥∥∥∥−3 = 1. (21)
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The other principal curvature is easy to get

χ2 =
K(s, ϑ)

χ1
= − κg cosϑ+ κn sinϑ

1− κg cosϑ− κn sinϑ
. (22)

To analyze the shape of Q(ϑ, s) we investi-
gate the distribution of the Gaussian curvature
K(s, ϑ) in the following: The curvature of the
isoparametric s-curves (u-constant) is

χ :=
‖Qs ×Qss‖
‖Qs‖3

=
κ

1− κg cosϑ− κn sinϑ
.

(23)
Furthermore, from Eqs (2), and (9) we see that

N(s, ϑ) = cosϕn + sinϕb, withϕ = ϑ− θ. (24)

Here ϕ is the angle from n to N in the orienta-
tion of the tangent plane T (M). On the other
hand, the principal curvature χ2 is related to the
curvature χ(s, ϑ) via Meusnier’s Theorem [1]:

χ2 = χ(s, ϑ) cosϕ. (25)

Therefore, the Gaussian curvature K(s, ϑ) can be
rewritten as

K(s, ϑ) = χ(s, ϑ) cosϕ. (26)

We now need to find curves at M that are gen-
erated using parabolic points, which means points
with vanishing Gaussian curvature. These curves
separate elliptic (K > 0, locally convex) and hy-
perbolic (K < 0, hence non-convex) parts of the
surface. In computer Aided Geometric Design,
conditions that guarantee the convexity of a sur-
face are required in various applications (such as
manufacturing of sculptured surfaces, or layered
manufacturing). In the case of the sweeping sur-
face M , however, the convexity can be controlled
with the help of the differential geometric prop-
erties as:

K(s, ϑ) = 0⇔ χ(s, ϑ) cosϕ = 0. (27)

It can be seen that there is two possible cases pro-
ducing parabolic points:
Case (1) occurs if χ(s, ϑ) = 0. Using Eq. (23)
leads to that in case κ(s) = 0, therefore χ = 0.
In other words, the spine curve α = α(s) is degen-
erate into the straight line. Therefore, the inflec-
tion or the flat point of this spine curve generates
the parabolic curve ϑ =const. at the sweeping
surface.
Case (2) occurs if ϕ = π/2. This means that in
case N(s, ϑ) ‖ b, thus cosϕ = 0. Therefore this
curve α(s) is not just the line of curvature but it
is asymptotic curve also of the sweeping surface.

Hence, for the existing of parabolic points, the
condition

cosϕ = 0⇔ ϑ− θ =
π

2
, (28)

is satisfied. In fact we give the next corollary:

Corollary 3.2. Consider the sweeping
surface M with spine and profile curves have
non-vanishing curvatures everywhere. If the
normal N(s, ϑ) is never parallel to the principal
normal n(s) of the spine curve α(s), therefore M
has no parabolic points.

According to Proposition 3.3, with attention
to τg = 0, Eqs. (7), and (28) the expression of
the two parabolic curves is

Γ1(s) = α(s)− κn+κg

√
κ2
n+κ

2
g−1

κ2
n+κ

2
g

e2

+
κg+κn

√
κ2
n+κ

2
g−1

κ2
n+κ

2
g

e3,

Γ2(s) = α(s)− κn−κg

√
κ2
n+κ

2
g−1

κ2
n+κ

2
g

e2

+
κg−κn

√
κ2
n+κ

2
g−1

κ2
n+κ

2
g

e3.


(29)

Corollary 3.3. Suppose M is the sweeping
surface with spine and profile curves have non-
vanishing curvatures everywhere. Therefore M
has two parabolic curves if and only if the spine
curve α(s) is the asymptotic curve.

3.2 Developable surfaces
Developable surfaces can be briefly defined as spe-
cial cases of the ruled surfaces. Such surfaces are
used in different things, for example, in the manu-
facture of automobile body parts, airplane wings,
and ship hulls [15-20]. As a result, we analyze the
case, that the characteristic circle x(ϑ) degener-
ates into the straight line, i.e. x(ϑ) = (0, ϑ, ϑ),
thus generating a developable ruled surface

S : P(s, ϑ) = α(s) + ϑe3(s), ϑ ∈ R. (30)

Similarly, from Eq. (7), the developable surface
is written as

S⊥ : P⊥(s, ϑ) = α(s) + ϑe2(s), ϑ ∈ R. (31)

It is possible to show P(s, 0) = α(s) (resp.
P⊥(s, 0) = α(s)), 0 ≤ s ≤ L, such that , the
surface S (resp. S⊥) interpolate the curve α(s).
Furthermore, since

Ps ×Pϑ := − (1− ϑκn) e2(s), (32)
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then S⊥ is the normal developable surface of S
along α(s). Therefore, the surface S (resp. S⊥)
interpolates the curve α(s), and α(s) is the line
of curvature of S (resp. S⊥).

Proposition 3.5. (Existence and unique-
ness). Considering previous notations there is the
unique P(s, ϑ) developable ruled surface repre-
sented by Eq. (30).
Proof. For the existence, we have the P(s, ϑ) de-
velopable ruled surface represented by Eq. (30).
Moreover, since P(s, ϑ) is the ruled surface, we
assume that

S : P(s, ϑ) = α(s) + ϑζ(s), ϑ ∈ R,
with (κg,κn) 6= (0, 0),

ζ(s) = ζ1(s)e1+ζ2(s)e2+ζ3(s)e3,

‖ζ(s)‖2 = ζ21 + ζ22 + ζ23 = 1, ζ
′
(s) 6= 0.


(33)

Direct result from Eqs. (38) shows that S is
developable if and only if

det(α
′
, ζ, ζ

′
) = 0 ⇔

−ζ3ζ
′

2 + ζ2ζ
′

3 − ζ1 (ζ3κg − ζ2κn) = 0. (34)

Further, since S is a developable surface along
α = α(s), we have

(Ps ×Pϑ) (s, ϑ) = ψ (s, ϑ) e2, (35)

where ψ = ψ (s, ϑ) is the differentiable function.
In addition, the normal vector Ps × Pϑ at the
point (s, 0) is

(Ps ×Pϑ) (s, 0) = −ζ3e2 + ζ2e3. (36)

Thus, from Eqs. (32), and (36), one finds that:

ζ3 = 0, andζ2 = ψ (s, 0) , (37)

which follows from Eq. (34) that ζ1 (ζ2κn) = 0.
In case (s, 0) is the regular point (which means,
ψ (s, 0) 6= 0), therefore ζ1 = 0, and ζ2(s) 6= 0.
Therefore, we obtain ζ(s) = e2 .

Proposition 3.6. Suppose M is a sweeping
surface defined using Eq. (7). As a result we can
have:
(1) The developable surfaces S and S⊥ intersect
along α(s) at a right angle,
(2) The curve α(s) is the line of curvature on S
and S⊥.

As an application (such as cylindrical milling
or flank milling), among the motion of the Dar-
boux frame, consider the cylindrical cutter be
rigidly linked to this frame. Therefore the equa-
tion of the family of cylindrical cutters, which is
given using the movement of cylindrical cutter
through α(s), will be written as:

Sf : P(s, ϑ) = P(s, ϑ) + fe2(s), (38)

where f defines cylindrical cutter radius. This
surface is the developable surface offset of the sur-
face P(s, ϑ). The equation of Sf , will be given as

Sf : P(s, ϑ) = α(s) + ϑe3(s) + fe2(s). (39)

The normal vector of cylindrical cutter is pre-
sented as

Ps ×Pϑ∥∥∥Ps ×Pϑ

∥∥∥ = e2(s). (40)

Also, from Eq. (38), we have

S : P(s, ϑ) = P(s, ϑ)− fe2(s). (41)

The derivative of Eq. (41) respecting to s is in-
troduced as

Ps(s, ϑ) = Ps(s, ϑ)− (fω)× e2. (42)

From Eq. (42) it can be seen that the vector
Ps(s, ϑ) is perpendicular to the normal vector
e2. Further, the vector e2 is perpendicular to
the tool axis vector e1(s). Consequently, the
envelope surface of the cylindrical cutter and the
developable surface P(s, ϑ) have the common
normal vector and the length between the two
surfaces is cylindrical cutter radius f . Hence,
this is will be given as coming:

Proposition 3.7. Consider a developable sur-
face S parametrized by Eq. (30). Let Sf be the
envelope surface of cylindrical cutter at distance
f . Therefore the two surfaces S and Sf are offset
developable surfaces.

3.3 Application
As an application of our main results, an repre-
sentative example is given. It is also used to be
sure of the previous formulae.

Example 1. Given the base surface as follows:

X(s, v) = (cos s− v√
2

cos s, sin s− v√
2

sin s,
v√
2

),

where I ⊆ R, and v ∈ R. According to

e3(s, v) =
Xs ×Xv

‖Xs ×Xv‖
, and e3(s, 0) = e3(s),
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we get

e3(s) = (
1√
2

cos s,
1√
2

sin s,
1√
2

).

Moreover, we have

e1(s) = (− sin s, cos s, 0).

Since e2(s) = e3(s)× e1(s),

e2(s) = (− 1√
2

cos s,− 1√
2

sin s,
1√
2

).

Also, we can calculate

κg =
1√
2
,κn =

−1√
2
, and τg = 0.

Then θ(s) = θ0 is a constant. Therefor, the
sweeping surface can be given as

M : Q(s, ϑ) = (cos s, sin s, 0) + cosϑe2(s)

+ sinϑe3(s).

The graphs of the sweeping surface and the
developable surfaces are shown in Figs. 1, 2, and
3 . Note that the developable surfaces P and P⊥

intersect along α(s) at a right angle as seen in the
Fig. 4.

Figure 1: M

Figure 2: S

Figure 3: S⊥

Figure 4: S⊥ ∪ S

4 Conclusion
This paper studied the Darboux frames that
are associated with a curve on surface and the
sweeping surfaces that are generated using those
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frames. The paper further investigated the prob-
lem of requiring the surfaces that are being both
sweeping surfaces and developable surfaces. We
hope those results will be used more for surfaces
in geometric modeling, garment-manufacture in-
dustry, and the manufacturing of products. The
methodology used here can be applied in dif-
ferent spaces such as Lorentz-Minkowski space,
isotropic space, and etc.
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